MATTHEW MAYERNIK

PROJECT SCIENTIST / RESEARCH DATA SERVICES SPECIALIST NCAR LIBRARY / UCAR INTEGRATED INFORMATION SERVICES NATIONAL CENTER FOR ATMOSPHERIC RESEARCH (NCAR) UNIVERSITY CORPORATION FOR ATMOSPHERIC RESEARCH (UCAR) MAYERNIK@UCAR.EDU

PRIMARY RESEARCH OR PRACTICE AREA(S):

- DATA CURATION
- DATA PUBLICATION & CITATION
- MFTADATA

PREVIOUS EXPERIENCE

PH.D. UCLA – INFORMATION STUDIES

RELATED WORK (PROJECTS SPECIFIC TO WORKSHOP WITH WEB-SITES)

- Data citations within NCAR/UCP (http://dx.doi.org/10.5065/D6ZC80VN)
- Peer REview for Publication & Accreditation of Research Data in the Earth sciences (PREPARDE, http://www2.le.ac.uk/projects/preparde)

CONTACT INFORMATION:

P.O. Box 3000

Boulder, CO 80307-3000

SURVEY OF COMMONALITY WITH OTHER DISCIPLINES

WORKSHOP 2 – JULY 25, 2013

INDIANAPOLIS, INDIANA

Geosciences

- Some very robust and high visibility data collections
 - Atmospheric/Oceanic: NOAA, NCAR
 - Geophysical: USGS, IRIS
 - NASA: Many DAACs
 - International: DKRZ (Germany), ECMWF (UK), NERC Environmental Data Centres (UK)
- Some established and widely used standards
 - Data NetCDF, HDF, GRIB, BUFR, SEED, SAC...
 - Metadata ISO (19139, 19115, 19119), FGDC, GCMD...
- Most importantly: tremendous diversity!

NCAR/UCAR Scope

NCAR/UCAR Computing Facilities

NCAR/UCAR Data Services

http://www2.ucar.edu/research-resources/data-archive-services

1. Guidelines – Near term

As a service, create and maintain community-developed data and software management guidelines.

- Too many ad hoc systems
- Complete systems: standards-based, sustainable, cost effective
- Understand Principles:
 - Preservation
 - Data lifecycle
 - Data and metadata standards
 - Data management planning
 - Provenance
 - Data citations and DOIs

2. Archiving and Access – Long term

Create, adapt or identify an archiving and access system for research data and software that need, but do not currently have, sufficient, secure and publicly accessible repositories.

- Too many orphan datasets not in managed repositories
- Scholarly publications and data, rightfully so, are becoming more tightly linked, e.g. DOI's
- Cost is a major consideration
- Flexible systems; what is the appropriate level of service?
- Assess what we have, then build or adapt to meet additional needs

Near term: quantitative and comparative assessment of existing systems, and their capacity for expansion

3. Discovery – Long term

Create and maintain a unified and flexible system for discovery of UCAR publications, data, software, and services.

- ➤ Past, did well with centralized method for <u>data</u> (Community Data Portal), 10-yr old effort
- Need a new approach:
 - Expand, more data, publications, more software, and services
 - Convert to a distributed method
 - Add richness to the metadata standard
- Sustainable!

Near term: Pilot projects that connect pairs of systems

4. Preservation – Long term

Develop appropriate digital data preservation solution(s).

- Responsibility to preserve digital assets related to science
- Easily overlooked
- Cost is not always considered
- Need a suite of approaches
 - Dedicated UCAR archives
 - Cloud storage solutions (at UCAR or commercial)
- Challenge: sustaining management personnel and/or developing reliable self management tools

5. External Integration – Long term

Prepare UCAR systems for greater integration with external distributed and federated systems.

- Federated? Data is mutually <u>discoverable</u> and <u>accessible</u> from multiple data systems.
 - From a single point a user can reach into multiple systems, either interactively (GUI) or interoperably (scripted, web service)
- Future, standards are key, participation is a must
- Challenges many
 - Sharing storage access and computing
 - > Authorization, authentication for users: security concerns
 - Managing large numbers of datasets

Near term: increase people involved with developing federations – progressively track and report on trends, etc.

6. Make Data Open and Machine Readable the New Default at UCAR - Long term

Make data accessible and machine readable by publishing an API(s) and providing a data service to the general public, entrepreneurs, policy & decision makers, and as supplementary data for our scientists in the field.

- Exploit data for mobile and web applications
- Establish and maintain robust API
- Collaborate, extensively with public and private developers
- Supports societal needs, improves UCAR name recognition

Near term: Conferences, workshops, or visitor programs which bring together data providers and application developers.

Conclusions:

- Many improvements to demonstrate our leadership in data services!
- Challenges:
 - > Finding resources, largely human
 - > Setting priorities cannot do it all
 - > Developing the most fruitful implementation plans
 - Creating sustainable methods and procedures
 - ➤ Things will change are we planning in a flexible/adaptable manner?
- These data service issues are not exclusively at UCAR, they are in all organizations to some degree.

Thanks

- UCAR Information Technology Council, Data Services Working Group
 - ➤ Steve Worley Lead
 - Matt Mayernik co-lead
 - ➤ Mike Wright
 - > Steve Williams
 - ➤ Gary Strand
 - > Peter Schmitt
 - Marcos Hermida
 - > Eric Nienhouse
 - Kelly Keene

Email:

mayernik@ucar.edu