
LDV: Light-weight
Database Virtualization
Quan Pham2, Tanu Malik1, Boris Glavic3 and Ian Foster1,2

Computation Institute1and Department of Computer Science2,3

University of Chicago1,2, Argonne National Laboratory1

Illinois Institute of Technology3

Application Virtualization

Alice’s Machine Bob’s Machine
&RGH�'DWD�(QYLURQPHQW

$XGLW
Ɣ ,QYRNH�DORQJVLGH�WKH�FRPSXWDWLRQ

FGH�S\WKRQ�ZHDWKHUBVLP�S\�WRN\R�GDW

Ɣ &DSWXUHV�V\VWHP�FDOOV�XVLQJ
SWUDFH
ż ([HFXWH�DQG�FRS\�LQWR�FGH�SDFNDJH�FGH�URRW

Application Virtualization for
DB Applications

Application

Operating System

File System File System
Slice

Pkg

Copy
AV

Alice's
Computer

chdir(“/usr”)
open
(“lib/libc.so.6”)DB Server

Application Virtualization for
DB Applications

• Applications that interact with a relational database

• Examples:

• Text-mining applications that download data,
preprocess and insert into a personal DB

• Analysis scripts using parts of a hosted database

Application

Operating System

File System File System
Slice

Pkg

Copy
AV

Alice's
Computer

chdir(“/usr”)
open
(“lib/libc.so.6”)DB Server

Why doesn’t it work?
• Application virtualization methods are

oblivious to semantics of data in a database
system

• The database state at the time of sharing
the application may not be the same as the
start of the application

• Databases are often shared among multiple users and
across many application. Thus, to re-execute an applica-
tion, the database state, as of the start of the application,
has to be restored.

• Provenance can be used to understand a shared applica-
tion. While database and application provenance are well
understood, combining these two types of provenance
remains challenging.

None of the above mentioned methods - companion web-
sites, VM images, and application virtualization - addresses
these challenges. There is no automatic mechanism for cap-
turing and linking application and DB provenance, these
approaches provide no means for determining which data is
relevant for an application, they do not solve the issue of
resetting a database to a previous state, and do not address
the licensing problem of sharing the binaries of commercial
database servers.

For example, application virtualization is currently limited
to local applications that do not communicate to server pro-
cesses, such as a web server or a database server. In fact,
when an application communicates with a database server,
the technique can atmost record the communication between
the client and database server. This is not sufficient for
determining which data was used by the application (and, thus,
should be included in the package) and to be able to reset
the database to its state before application execution started.
Temporal databases provide a solution for the later problem,
but not for the earlier. Virtualization can ensure reproducibility
if the user has control over the database server, the server
is started as part of the application (thus the virtualization
system can capture a consistent state of the database files on
disk and the server binaries) and shutdown before the capture
mechanism is stopped. However, this will include complete
database into the resulting package.

The goal of this work is to improve computational repro-
ducibility for database applications. The light-weight database
application virtualization (LDV) approach we present in this
work addresses the aforementioned challenges. In particular,
LDV enables users to easily create a light-weight database
application virtualization (LDV) package, consisting of code,
data, software dependencies, a slice of the database with which
is required for re-execution, and provenance. If shared with
a 2nd party, the application runs in exactly the same way
as it did for the original user, without requiring installation
or configuration of a database server at the target site. The
provenance included in a package can used to understand
data dependencies across the application and database, and to
determine which parts of a workflow are needed to re-create
a partial result.

II. LIGHT-WEIGHT DATABASE VIRTUALIZATION

We describe our approach by means of an example repro-
ducibility task. Consider a user Alice who has been using a
database in the past to conduct her experiments. She has finally
developed a database application which reads some input data
and outputs some analysis that she believes is interesting to

share with Bob (Figure 1). Alice would preferably like to share
this application in the form of package P with Bob, who may
want to re-execute the application in its entirety or may want to
validate, just the analysis task, or provide his own data inputs
to examine the analysis result.

If Alice wants Bob to re-execute and build upon her
database application, then Bob must have access to an en-
vironment that consists of application binaries and data, any
extension modules that the code depends upon (e.g., dynam-
ically linked libraries), a database server and a database on
which the application can be re-executed. Ideally, it would
be useful if Alice’s environment can be virtualized and thus
automatically set up for Bob.

P3 P4Other experiments

f1

P1 Insert

t1

t2

t3

Query

P2

t4

f2

Alice’s
experiment

Database

Fig. 1: Alice’s experiment with processes P1 and P2 uses tuple
t1, inserts tuple t3, creates final output f2. Dumping database
produces redundant tuple t2. Capturing Alice’s experiment in
its fullness makes t3 redundant. Only t1 is needed for the
experiment to execute.

If we assume that Alice’s application consists of set of
modules that read data from files and/or retrieve data from
a database, and write data to files and/or write data to a
database, the database server is accessed through standard
SQL language commands, and Alice executes her application
through a command line script, providing a single entry point
for monitoring the application, then several questions arise
with respect to virtualizing her environment. In particular:

•How do we include the necessary and sufficient data, i.e.,
data that corresponds to her last experiment in the virtualized
environment? As Figure 1 shows there are data (tuples) in the
database that are not part of the current experiment and if
included in the package, may increase the size considerably,
not leading to a light-weight virtualized environment.

•How can a self-contained package be created so that Bob
does not have to install or configure a database server?

•How can Bob re-execute the database application, par-
tially, or wholly, without communicating with Alice’s database
server?

We describe our primary contributions in addressing these
questions, and also describe an overall organization map for
the paper. In summary we monitor database applications and
combine database and application provenance to determine
necessary and sufficient data. We describe how this data can be

LDV: Light-weight
Database Virtualization

• Goal: Easily and efficiently share and repeat
DB applications.

Key Ideas

• DB application = Application (OS) part + DB part

• Use data provenance to capture interactions from/to the
application side to the database side

• Limited formal mechanisms so far to combine the two kinds
of provenance models

• Create a virtualized package that can be re-
executed

• Either include the server and data, or replay interactions
(for licensed databases)

• No virtualization mechanism for database replay

Related Work

• Application virtualization

• Linux Containers, CDE[Usenix’11]

• Packaging with annotations

• Docker

• Packaging with provenance

• PTU1[TaPP’13], ReproZip[TaPP’13], Research Objects

• Unified provenance models

• based on program instrumentation [TaPP’12]

1 Q. Pham, T. Malik, and I. Foster. Using provenance for repeatability. In Theory and Practice of Provenance (TaPP), 2013.

How does LDV work?

Application

Operating System

File System

DB Server

Execution
Trace

DB Server
DB Slice

File System
Slice

Pkg

Copy LDV

Alice's
Computer

Alice’s Machine

ldv-audit db-app

• Monitoring system calls

• Monitoring SQL

• Server-included packages

• Server-excluded
packages

• Execution traces

• Relevant DB and filesystem
slices

• Redirecting file access

• Redirecting DB access

• Server-included packages

• Server-excluded packages
File System

Bob's
ComputerUser Application

Operating System

DB Server

Execution
Trace

DB Server
DB Slice

File System
Slice

Pkg

LDV Redirect

Bob’s Machine

ldv-exec db-app

How does LDV work?

Example

Alice:~$ ldv-audit app.sh
Application package created as app-pkg
Alice:~$ ls
app-pkg app.sh src data
Alice:~$echo "Hi Bob, Please find the pkg --Alice" \ |
mutt -s "Sharing DB Application -a "./app-pkg" \
-- bob-vldb2015@gmail.com

Bob:~$ ls .
app-pkg
Bob:~$ cd app-pkg
Bob:~$ ls
app.sh src data
Bob:~$ldv-exec app.sh
Running app-pkg....

Ubuntu 14.04
(Kernel 3.13)

+
Postgres 9.1

CentOS 6.2
(Kernel 2.6.32)

+
MySQL

LDV Issues

• Monitoring system calls

• Monitoring SQL

• Execution traces

• Relevant DB slices

• Redirecting file access

• Server-included packages

• Server-excluded packages

• Redirecting DB access

Size Comparison

 10

 100

 1000

 10000

1-1 1-2 1-3 1-4 1-5 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4 4-1 4-2 4-3 4-4 4-5

Pa
ck

ag
e

si
ze

 (M
B)

Query

PTU package
Server-included package
Server-excluded package

Fig. 9: LDV packages are significantly smaller than PTU
packages when queries have low selectivity.

and the LDV packages. The VMI is 8.2 GB: 80 times larger
than the average LDV package (100MB). To evaluate runtime
performance, we instantiate this VMI using the same number
of cores and memory as in our machine to execute our queries.
Recall that Figure 8b shows that re-executing these queries
in a VM is slightly slower than a non-audited PostgreSQL
execution, and significantly slower than LDV packages.

X. CONCLUSIONS

We introduced a light-weight DB virtualization (LDV)
system that can permit sharing and re-execution of appli-
cations that perform DB operations. This system uses data
collected via application monitoring to create re-executable
packages that include an application, its dependencies (data
files, relevant DB tuples), and a combined execution trace.
Such packages can be used to repeat an application or part of
an application in a different environment.

Our LDV framework features an innovative integration of
distinct OS and DB provenance models, and new methods
for inferring data dependencies that cross model boundaries.
The resulting system creates execution traces according to this
framework and uses these traces to determine which data needs
to be included in a repeatability package. It leaves to the user
the choice of whether the package should include the DBMS.
Our prototype implementation integrates the PTU (OS) and
Perm (DB) provenance systems. In future work, we plan to
integrate with the DB-independent GProM [2] middleware.

XI. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grants ICER-1343816 and SES-0951576,
and by the US Department of Energy under contract DE-AC02-
06CH11357. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

REFERENCES

[1] Y. Amsterdamer et al. Putting Lipstick on Pig: Enabling Database-style
Workflow Provenance. PVLDB, 5(4), 2011.

[2] B. Arab, B. Glavic, et al. A generic provenance middleware for database
queries, updates, and transactions. In Proceedings of TaPP, 2014.

[3] N. Balakrishnan, T. Bytheway, et al. Opus: A lightweight system for
observational provenance in user space. In TaPP, 2013.

[4] C. T. Brown. Some myths of reproducible computational research. http://
ivory.idyll.org/blog/2014-myths-of-computational-reproducibility.html.

[5] J. Cheney et al. Provenance in Databases: Why, How, and Where.
Foundations and Trends in Databases, 1(4), 2009.

[6] F. Chirigati and J. Freire. Towards integrating workflow and database
provenance. In Provenance and Annotation of Data and Processes. 2012.

[7] F. S. Chirigati, D. Shasha, and J. Freire. Reprozip: Using provenance
to support computational reproducibility. In TaPP, 2013.

[8] S. C. Dey, S. Riddle, and B. Ludäscher. Provenance analyzer: Exploring
provenance semantics with logic rules. In TaPP, 2013.

[9] J. Freire and C. T. Silva. Making computations and publications
reproducible with vistrails. Computing in Science and Engineering,
14(4), 2012.

[10] B. Glavic et al. Perm: Processing Provenance and Data on the same
Data Model through Query Rewriting. In ICDE, 2009.

[11] B. Glavic et al. Using sql for efficient generation and querying of
provenance information. In In search of elegance in the theory and
practice of computation: a Festschrift in honour of Peter Buneman. 2013.

[12] C. A. Goble and D. C. De Roure. myExperiment: social networking
for workflow-using e-scientists. In Proceedings of the 2Nd Workshop
on Workflows in Support of Large-scale Science, 2007.

[13] P. J. Guo et al. CDE: using system call interposition to automatically
create portable software packages. In USENIX Annual Technical
Conference, Portland, OR, 2011.

[14] B. Howe. Virtual appliances, cloud computing, and reproducible
research. Computing in Science & Engineering, 14(4):36–41, 2012.

[15] G. Karvounarakis and T. Green. Semiring-annotated data: Queries and
provenance. SIGMOD Record, 41(3):5–14, 2012.

[16] K. Keahey et al. Virtual workspaces for scientific applications. Journal
of Physics: Conference Series, 78(1), 2007.

[17] N. Kwasnikowska, L. Moreau, and J. Van den Bussche. A formal
account of the open provenance model. journal, 2010.

[18] S. Lampoudi. The path to virtual machine images as first class
provenance. Age, 2011.

[19] T. Malik, L. Nistor, and A. Gehani. Tracking and sketching distributed
data provenance. In International Conference on eScience, 2010.

[20] L. Moreau and P. Missier. Prov-dm: The prov data model.
http://www.w3.org/TR/2013/REC-prov-dm-20130430/, 2013.

[21] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko,
D. Maclean, D. W. Margo, M. I. Seltzer, and R. Smogor. Layering
in provenance systems., 2009.

[22] Q. Pham, T. Malik, and I. Foster. Using provenance for repeatability.
In TaPP, 2013.

[23] Q. Pham, T. Malik, and I. Foster. Auditing and maintaining provenance
in software packages. In IPAW, 2014.

[24] M. Stamatogiannakis et al. Looking inside the black-box: Capturing
data provenance using dynamic instrumentation. In TAPP, 2014.

[25] Transaction Processing Performance Council. TPC-H benchmark spec-
ification. Published at http://www.tcp.org/hspec.html, 2008.

[26] M. Zhang et al. Tracing Lineage beyond Relational Operators. In VLDB,
2007.

• LDV packages are significantly smaller than PTU
packages when queries have low selectivity

• The VMI is 8.2 GB: 80 times larger than the
average LDV package (100MB).

Audit and Replay

TABLE II: The 18 TPC-H benchmark queries used in our experiments

Queries SQL PARAM Sel.
Q1-1 to
Q1-5

SELECT l quantity, l partkey , l extendedprice , l shipdate , l receiptdate FROM lineitem
WHERE l suppkey BETWEEN 1 AND PARAM

10, 20, 50, 100,
250

1%, 2%, 5%,
10%, 25%

Q2-1 to
Q2-4

SELECT o comment, l comment FROM lineitem l, orders o, customer c WHERE l.l orderkey
= o.o orderkey AND o.o custkey = c.c custkey AND c.c name LIKE ’%PARAM%’;

0000000, 000000,
00000, 0000

66%, 6.6%,
0.66%, 0.06%

Q3-1 to
Q3-4

SELECT count(⇤) FROM lineitem l, orders o, customer c WHERE l.l orderkey = o.o orderkey
AND o.o custkey = c.c custkey AND c.c name LIKE ’%PARAM%’;

0000000, 000000,
00000, 0000

66%, 6.6%,
0.66%, 0.06%

Q4-1 to
Q4-5

SELECT o orderkey, AVG(l quantity) AS avgQ FROM lineitem l, orders o WHERE l.l orderkey
= o.o orderkey AND l suppkey BETWEEN 1 AND PARAM GROUP BY o orderkey;

10, 20, 50, 100,
250

1%, 2%, 5%,
10%, 25%

(a) Audit

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

Inserts First
Select

Other
Selects

Updates

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

PostgreSQL + PTU
Server-included package
Server-excluded package

(b) Replay

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

Initialization Inserts First
Select

Other
Selects

Updates

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

PostgreSQL + PTU

1E
-0

5

0.
01

00
1

0.
08

0.
05

3

0.
00

01

Server-included package

4.
19

0.
00

06
3

0.
05

0.
02

5

0.
00

03

Server-excluded package

0.
01

2E
-0

5

0.
01

0.
00

9

0.
00

01

Fig. 7: Execution time of each step in an application with query Q1-1

(a) Audit

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

1-1 1-2 1-3 1-4 1-5 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4 4-1 4-2 4-3 4-4 4-5

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Query

PostgreSQL + PTU
Server-included package
Server-excluded package

(b) Replay

 0.001

 0.01

 0.1

 1

 10

 100

1-1 1-2 1-3 1-4 1-5 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4 4-1 4-2 4-3 4-4 4-5

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Query

PostgreSQL + PTU
Server-included package
Server-excluded package

VM

Fig. 8: Execution time for each query, during audit (left) and replay (right)

TABLE III: Package Contents: PTU packages contain all data
files of the full DB, whereas server-included LDV packages
contain the data files of an empty DB.

Package type Software
binaries

DB
server

Data
files

DB
provenance

PTU 3 3 3(full) 7
LDV server-included 3 3 3(empty) 3
LDV server-excluded 3 7 7 3

server in the application execution, i.e., the server binaries and
data files. An LDV package contains DB provenance for re-
execution, the DB server binaries, and an empty data directory
in the server-included scenario (Table III).

Figure 9 shows the sizes of the PTU, server-included, and
server-excluded packages constructed for the queries listed
in Table II. Server-included LDV packages are significantly
smaller than PTU packages, because they contain only those

tuples needed to re-execute the application—which, for these
queries, is at most ⇠25% of all tuples. Server-excluded LDV
packages are often yet smaller, because they contain only the
query results—which, for many of our experiment queries, are
smaller than the tuples required for re-execution. However,
recall that server-excluded packages have less flexibility than
do server-included packages.

F. Comparison with the Virtual Machine Approach

We compare a virtual machine image (VMI) with the server-
included and server-excluded LDV approaches. The VMI is
created based on a bare-bone Debian Wheezy 64bit VMI on
which we install the DB server and the experiment binaries as
in Section IX-A. We use “apt-get” to install a DB server, and
“scp” to copy all DB files and source code for the experiment
from our machine. Using the created VMI, we run the same
application to compare the size and performance of this VMI

LDV amortizes audit cost significantly at replay time

Summary
• LDV permits sharing and repeating DB

applications

• LDV combines OS and DB provenance to
determine file and DB slices

• LDV creates light-weight virtualized
packages based on combined provenance

• Results show LDV is efficient, usable, and
general

• LDV at http://github.com/lordpretzel/ldv.git

http://github.com/lordpretzel/ldv.git

