

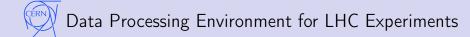
Potential of Virtualization Technology for Long-term Data Preservation

J Blomer on behalf of the CernVM Team jblomer@cern.ch

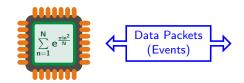
CERN PH-SFT

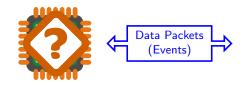
Potential of Virtualization Technology

Preserve the historic data analysis environment (This capability is only a part of long-term data preservation)



Potential of Virtualization Technology


Preserve the historic data analysis environment (This capability is only a part of long-term data preservation)


Motivation:

- Process legacy data
 - Data formats are typically self-describing or convertable
 - Software implicitly encodes knowledge about the correct interpretation of the data
 - After substantial upgrades and modifications of the detector, the new software might lose this legacy knowledge
- 2 Validation of new software versions
 - Otherwise, if the new software can process legacy data, comparison with historic version provides input for validation

CernVM Goal: a uniform and portable environment for developing and running LHC data processing applications

${\sf Data\ Processing\ Environment\ for\ LHC\ Experiments}$

> cmsRun DiPhoton_Analysis_cfg.py

Data Processing Environment for LHC Experiments

> cmsRun DiPhoton_Analysis_cfg.py

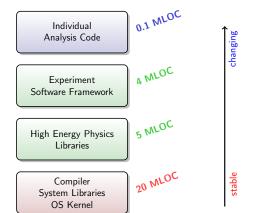
Individual 0.1 Nanalysis Code

0.1 MLOC

Experiment Software Framework 4 MLOC

High Energy Physics Libraries 5 MLOC

Compiler System Libraries OS Kernel 20 MLOC

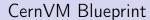


Data Processing Environment for LHC Experiments

> cmsRun DiPhoton_Analysis_cfg.py

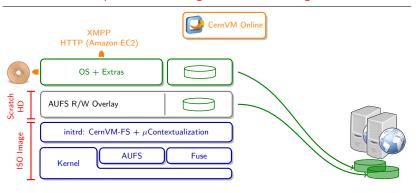
Data Processing Environment for LHC Experiments

> cmsRun DiPhoton_Analysis_cfg.py


0.1 MLOC Individual Analysis Code 4 MLOC Experiment Software Framework 5 MLOC High Energy Physics Libraries 20 MLOC Compiler System Libraries OS Kernel

hanging

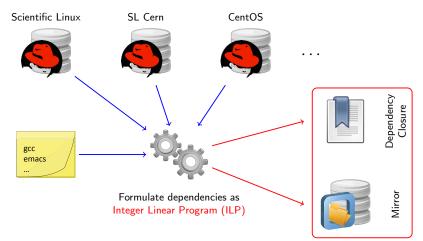
Amplifying


- Frequent Updates
- Not a single binary a development environment
- Hundreds of libraries with partially untracked dependencies
- Not easily chunkable
 - Not easily packagable

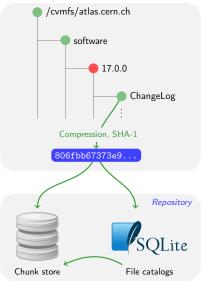
ctab

CernVM Blueprint for Preserving the Data Processing Environment

Provide the analysis environment including the operating system on CernVM-FS.


- No packaging, the environment is provided on demand
- CernVM-FS is a snapshotting and versioning file system
- Only 2 CernVM-FS "version strings" describe the data analysis environment

CernVM-FS Operating System Repository


Maintenance of the repository must not become a Linux distributor's job

Idea: Automatically generate a fully versioned, closed package list from an unversioned "shopping list" of packages (Standard package managers are not designed for preservation!)

Versioning and Snapshots in CernVM-FS

Data Store

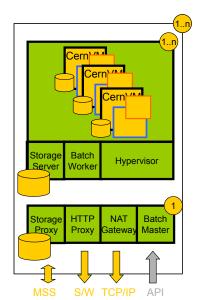
- Compressed chunks (files)
- Eliminates duplicates
- Never deletes

File Catalog

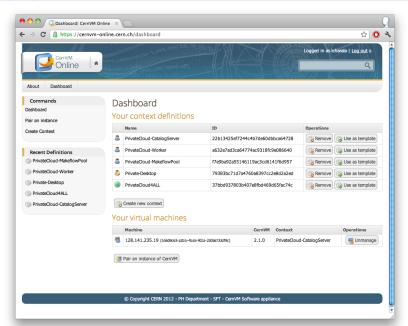
- Directory structure, symlinks
- Content hashes of regular files
- Digitally signed
 ⇒integrity, authenticity
- Plain files, stored as chunks in the data store

Versioning and Snapshots in CernVM-FS

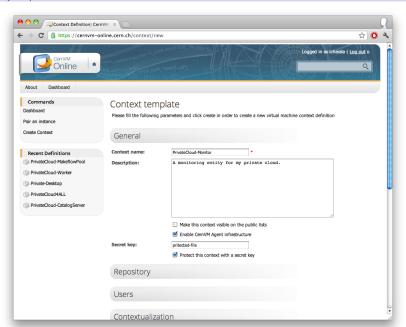
Contextualization

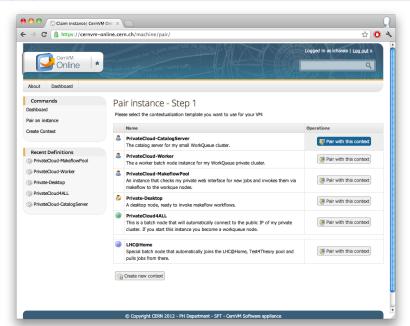


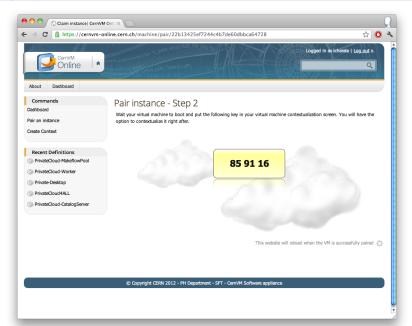
Simple API


- Instantiate + Contextualize
- Terminate
- List instances, list images

Amiconfig plug-ins


- Credentials (ssh, X.509)
- Condor head & batch services
- Squid server
- XrootD storage proxy
- Monitoring & directory service agents
- Network configuration & tuning






```
6 6 6
                               CernVM-15 [Running]
Welcome to CernUM Virtual Machine, version 2.6.0
Machine UUID 2f2f1157-4f45-405a-bf1c-3a5b309c87d5
To contextualize your VM log-in to http://cernvm-online.cern.ch/
Instance pairing pin: 859116
Changing password for user cernvm.
passwd: all authentication tokens updated <u>successfully.</u>
INIT: Switching to runlevel: 5
INIT: Sending processes the TERM signal
Starting CernUM: Shutting down CernUM-FS:
Starting CernUM-FS:
Starting CernUM-FS:
Starting vmcontext hepix: Starting vmcontext hepix ...
```


Components of the CernVM Blue Print

Virtual Machine

- Linux distribution based on Scientific Linux.
- Supports all popular hypervisors.
- Minimal footprint, the VM interface is needed
- Flexible contextualization.

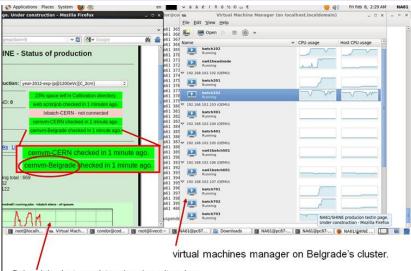
CernVM Filesystem

- Read-only, globally distributed file system optimized for software distribution.
- Based on plain files and HTTP
- Snapshotting and versioning file system
 - Already used in production by LHC experiments.

CernVM - based data analysis environment preservation

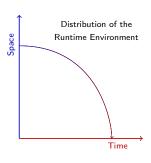
- CernVM-FS environment is defined version strings. OS packages are defined by a versioned, closed package group (Meta-RPM)
- You need only the CernVM version string to rebuild CernVM image on demand.
- Bookkeeping

- Ensembles of CernVMs can recreate a virtual cluster for data processing.
- CernVM can be contextualized using a small subset of EC2 API that allows it to be deployed on public or private clouds


Private Cloud

NA61 Production Jobs in Belgrade

Integration of a CernVM cloud with a data provenance system


Belgrade's cluster registered and monitored on NA61/SHINE production page (under construction)

http://dmaletic.web.cern.ch/dmaletic/cgi-bin/na61prod

Summary

- Plain virtualization is not sufficient to preserve the data processing environment
- CernVM and CernVM-FS technologies provide handles to re-create a data processing environment identified by a few version strings
- As such, it is easy to integrate the definition of the data processing environment in data provenance systems
- The exposed interface is very slim:
 CernVM clusters run on private and public clouds without grid infrastructures
- Such virtual machines are easy to use and they can be given to "interested citizens" (see also LHC@Home 2.0 volunteer cloud)

Please contact us for any further questions!